<name> Class: Honors Geometry Date: <date> Topic: Lesson 1-4 (Measuring Segments, and Angles)

One-to-one correspondence	Pair every item in 1 set w/one & exactly 1 item in another set, none left over
Postulate 1-5	The Ruler Postulate There's a 1-to-1 correspondence btwn real # line & the pts on a line ** You can measure the length of a segment. **
Segment length	Given \overline{AB} , the length of $\overline{AB} = AB = a - b $
Congruent segments	Two segments with same len Symbol is \cong If $AB = FE$ then $\overline{AB} \cong \overline{FE}$
Example	Pg 29, #2, optionally show steps
Postulate 1-6	The Segment Addition Postulate If pt <i>B</i> is on \overline{AC} and between pts <i>A</i> & <i>C</i> , then $AB + BC = AC$ <diagrams as="" necessary=""></diagrams>
Example	Pg 29, #10, optionally show steps
Midpoint of a segment	The pt that divides it into 2 congruent segments
Angle	 2 rays that share common endpoint & aren't on same line Rays are the <u>sides</u> Endpoint is the <u>vertex</u> Symbol is ∠ Named: ∠ABC (vertex point in middle always) ∠B (just use the vertex point) ∠1 (if you've numbered the angles) Only use vertex naming if no confusion <diagrams as="" necessary=""></diagrams>

<name> Class: Honors Geometry Date: <date> Topic: Lesson 1-4 (Measuring Segments, and Angles)

Postulate 1-7	 The Protractor Postulate There is a 1-to-1 correspondence btwn the real #'s 0-180 and the angles on one side of a line ** You can measure an angle in degrees. ** Symbol for measure of an angle (COD): m∠COD. <diagrams as="" necessary=""></diagrams>
Types of angles	 Acute: 0° < x < 90° Right: x = 90° Obtuse: 90° < x < 180° Straight: x = 180°
Postulate 1-8	The Angle Addition Postulate If point B lies in the interior of $\angle ABC$, then $m \angle ABD + m \angle DBC = m \angle ABC$ <diagrams as="" necessary=""></diagrams>
Congruent angles	Angles with the same measure. If $m \angle COD = m \angle FGH$, then $\angle COD \cong \angle FGH$